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Scattering and Reception by a Flanged
Parallel-Plate Waveguide:
TE-Mode Analysis

Tah J. Park and Hyo J. Eom

Abstract—The TE-mode characteristics of scattering and reception by
a flanged parallel-plate waveguide are examined. The Fourier transform
is used to represent the scattered fields in the spectral domain. The
simultaneous equations for the transmitted field coefficients are solved to
obtain the solution in an asymptotic series form. Numerical computations
are performed to illustrate the behaviors of the scattered field and the
transmission coefficients versus the aperture size.

I. INTRODUCTION

Electromagnetic scattering from a conducting double-wedge has
been extensively studied with asymptotic high-frequency techniques
[1], [2] since an exact closed-form solutionis still unknown. TM-mode
scattering from a flanged parallel-plate waveguide (a special double-
wedge geometry) was considered in [3] using the Weber—Schatheitlin
integral technique. In this paper, we examine TE-mode scattering
from the flanged waveguide by utilizing the Fourier transform and
the mode-matching technique [4], [5]. In the next section, we present
the scattered field as an asymptotic series which can be represented
in closed form in high-frequency limit. Numerical computations
are presented to illustrate the behaviors of the scattered field and
the transmission coefficient. A brief summary of the theoretical
development is given.
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II. SCATTERED AND RECEIVED FIELDS DERIVATION

Fig. 1 shows a perfect-conducting, flanged, parallel-plate wave-
guide of width 2¢. In Region I (# > 0) an incident field E; (TE
mode: transverse-clectric-to-propagation-direction) impinges on the
flanged parallel-plate waveguide. Region I (2 < 0, —a < z < a)
denotes the waveguide interior. The wave numbers of Regions I and
Il are k,(= 27/)) and k, respectively, and the time factor e~ is
suppressed.

In Region I the total electric field consists of the incident, reflected,
and scattered fields which are written as

E,(z,z) = ke —Ikz2

E;(w, z) = _tkzrtikaz

Ej(z,z) =1/(2x) /°° E;(C)e—JCI+Jk1: dc

where
kr = kosin8
k., =Fkocosf
k1= 4/k2 - (2
E(0) =/ E3(x,0)e’" da.
Since H.(z,z) = —1/(jwu)d0E,(x,z)/dz, the corresponding x

components of the incident, reflected, and scattered H fields may
be readily obtained.
In Region II the total transmitted field may be represented as

E,(z,2) = Z Ay S0 @ (z + a)e75m" a)

m=1
where

am = mn/(2a)

b= V= a.

To determine the unknown coefficients d,, it is necessary to
enforce continuity in the tangential E and H fields. First, continuity
of the tangential F field along the x—axis yields

E;(z,0) = E}(z,0) |z|<a
=0 2] > a.

0018-9480/93$03.00 © 1993 IEEE
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Taking the Fourier transform of both sides of the above equation,
we get

B0= [~ Beowri= [ Beoea. o

Substituting (1) into (2) and performing the integration with respect
to x, we obtain

E Q) =

Z Yy
Second, continuity of the tangential H field along —a < x <

a, z = 0, gives

H(2,0) + H(z,0) + H:(z,0)
heetss [T BB Qe a2 Y

m=1

I:eJCa(___l)m — e—JCa] 3)

-—Ht(x 0)

- sinam{z + a). @
Substituting (3) into (4), we obtain

1 & oo
2k_etFe® . — Z dp am/
2w =

—c0
(_1)m6—-]sa —eTIse

ke =

Z A & SIN e (€ + @) .
m=1
In order to determine the coefficient d.,, we multiply the above
equation by sin a,(x + a) and integrate both sides with respect to
from —a to a. We then obtain

kadn n _jkga —3kza —
gl 4
® m=1
Ao Imn + dn £na (5)
where

Imnz/

aman [(—1)™e?¢ — e [(=1)"e I — %% ky
¢ —ai) (¢ - af)
Contour integral evaluation of I,,,, may be performed in the complex
¢ plane to give

dc.

where 7, = 1/k2 — a2, and §,,, is Kronecker delta. The explicit
expressions for I, and I, are given in [5]. We find

® _4jaf(—1)"etkoso"2koar /(2] 4 v)
Lin = dv  (7)
0

[+ ) = o] [+ 5v) - 7]
famn = /0 [+ 70y — o] [+ g0y = 7]

4jab/v(-2j +v)
where

Imn = 27aNmbmn

ﬂ = Qn / ko .
Performing the integrations with respect to v [5], we obtain
2aBe?7koe(—1)"

a = am/ko,

fomn = =@y ®
Y SillAlt) - At2)]/a = [A(ts) — A(ta)]/B]
=1
Iypn = (agjfg2) 1; o sin™l o — —-———“1,8_[32 sin”' 8
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where
Sy = (105 >(05 j)imte
A() = (<1 e (V) + 2 A
t—1
. Z (20 — 2r — 3) 1N(—2pt)"
r=0
p = 2koa
erfe(---) + complementary error function
ty = (o —1)j, t2 = (—a = 1)j,
ts = (8 — 1)J, ta=(-f-1)

Note that I1,., in (8) is expressed in terms of an asymptotic series
of which the /th term is O(l/(koa)l_o'5

for Iy, converges only for |‘2k0a /(mm)| > 1; hence, it is com-
putationally more efficient to use the rapidly convergent integral (7)
than (8) for the evaluation of Ii,,,. When koa — oo the branch-cut
contribution becomes negligible and 1., — 27anmémn.
Substituting I,,» of (6) into (5) and solving for d,,, we obtain

=(U-R)'S=S+RS+ RS+ )

where D is a column matrix with elements d,,, U is the identity
matrix, R is a full matrix with elements 7, and S is a column
matrix with elements s,,. The explicit expressions for 7. and s,
are as follows:

). This series expression

Ui + Iamn)

T 9w (6 + na)a
_ 2k, ar, [—(—1)"@”“”" + e_fk”“]
Tt aldk — K
If ¥k = k,, then
N (Iimn + Izmn)
n 4néna
. = k.an [—(—1)"6”“”“ + e_Jk“”“]

§na(af — kZ)

An examination of 7, reveals that rnm ~ O[Ll/Vkoa] for
koa > 1 and &, + 71, # 0. For kga > 1 the branch-cut contribution
may be ignored (rnm = 0). Thus (9) reduces to the Kirchhoff
approximation

(10)

The branch-cut contributions I1ipmn and Ioms in In, account for
coupling between the continuous spectrum of Ej(x,z) and the
discrete spectrum of E} (z, z). When k,a > 1, the magnetic current
at the aperture, E} (2, 0), is approximately given as E;(,0) which
has a very narrow spectral width; hence, the branch-cut contributions
can be ignored.

Another special case of interest is low-frequency scattering
(koa < 1). When k,a < 1, the dominant element among 7ry, is
r11 whose value is approximately given by 2/72. Hence, we have

dl ’/2:81/(1—7’11). (11)

dm = Sm .

1II. NUMERICAL COMPUTATIONS

The time-averaged power demsity P, which is received by the
flanged parallel-plate waveguide, is
1

P=—

2 ’ Re(Et X I_It*) (=%)dz

—a

e 2 me(eh)
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where the EY and H? are the transmitted E and H field vectors, and
the symbols Re(---) and (---)" denote, respectively, the real part of
(--+) and the complex conjugate of (---).

The far-zone scattered field at a distance r from the origin can be
evaluated by utilizing the stationary phase approximation. We find

k
E;(8,,0) = ej(kor_"/@“ =2 cosb,
27r

oo e—]koasines(_l)m _ ejkoasmﬁs
’ § dmam
m=1

where §; = sin™! (z/r) and r = Vx? 4 22,

We first evaluate the scattered field for low-frequency scattering
(koa < 1). Substituting (11) into (12), and taking the leading term
(m = 1), we obtain

12
(kosin8,)” — a2, (12)

2 eJ(kOT_37f/4)
vV koT

Note that (13) agrees well with other low-frequency solution of
scattering from a narrow groove [6].

In Table I the transmission coefficients d,. are tabulated versus
2a/X for # = 0°. Note that d; = dy = --- = 0 because ¢ = 0°.

In Fig. 2 |d..| are plotted versus ¢ for koa = 10 (k = ko). Both
(9) and (10) are used to obtain the exact and approximate solutions
respectively. Fig. 2 shows that the exact and approximate solutions
agree well for high-frequency scattering.

Fig. 3 show the backscattered o (6, = —#) versus 8 for koa =
10 where ¢ = lim,—oo 27rr|E;(es,9)/E;(9)|2. The number of
coefficients d,, used in the computation are 10. Comparison of the
exact and approximate solutions for the cases k = ko and v/3ko
shows that an increase in k results in a decrease in o. In Fig. 3
the exact solution is compared with the UTD solution which may
be obtained by superimposing the singly-diffracted solutions [2].
This comparison between the UTD solution and ours indicates good
agreement (less than 2 dB error) when 6 < 20°.

E;(65.6) = 0.5(koa) cosf cosb, .

(13)

IV. CONCLUDING REMARKS

Using the Fourier transform and mode-matching approach, we
obtain the series solution to scattering from the flanged waveguide.
Numerical computations are performed to illustrate the behaviors
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TABLE I
Amplitude of d;, Phase, degrees
2(1/)\ d1 d3 d5 d1 d3 d5
0.51 3.0714 01710  0.0738 —19.61 —4126 —37.79
0.61 2.0517 01506  0.0592 —7.27 —63.11 —55.66
0.71 17721  0.1771  0.0644 -3.26 —76.02 —68.30
0.81 1.6238 02210 0.0758 -—-1.27 —83.70 —76.61
0.91 15304 02833  0.0910 —-0.20 —87.72 8145
1.01 14461 03635  0.1092 0.36 —89.03 —83.66
1.11 1.4194  0.4684  0.1299 0.61 —88.06 —83.80
1.21 13841  0.6088  0.1524 0.65 —84.83 —82.08
1.31 1.3565 0.8061  0.1754 0.53 —7873 —78.34
1.41 1.3344 11150  0.1947 0.22 —67.75 —71.60
1.51 1.3262  1.5705 0.1600 —0.83 —-27.14 —-59.36
1.61 13327 10477 0.1595 —0.55 —12.05 —75.68

of the fields scattered by and received by the flanged-parallel plate
waveguide. The series solution, which is based on (9), is exact and
numerically efficient.
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