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Scattering and Reception by a Flanged

Parallel-Plate Waveguide:

TE-Mode Analysis

Tah J. Park and Hyo J. Eom

Abstract-The TE-mode characteristics of scattering and reception by

a flanged parallel-plate wavegnide are examined. The Fourier transform
is used to represent the scattered fields in the spectral domain. The

simultaneous equations for the transmitted field coefficients are solved to
obtain the solution in an asymptotic series form. Nnmerical computations

are performed to illustrate the behaviors of the scattered field and the
transmission coefficients versns the aperture size.

I. INTRODUCTION

Electromagnetic scattering from a conducting double-wedge has

been extensively studied with asymptotic high-frequency techniques

[1], [2] since an exact closed-form solutionis still unknown. TM-mode

scattering from a flanged parallel-plate waveguide (a special double-

wedge geometry) was considered in [3] using the Weber–Schafheitlin

integral technique. In this paper, we examine TE-mode scattering

from the flanged waveguide by utilizing the Fourier transform and

the mode-matching technique [4], [5]. In the next section, we present

the scattered field as an asymptotic series which can be represented

in closed form in high-frequency limit. Numerical computations

are presented to illustrate the behaviors of the scattered field and

the transmission coefficient. A brief summary of the theoretical

development is given.

Manuscript received January 30, 1992 revised December 21, 1992.
The authors are with the Department of Electrical Engineering, Korea

Advanced Institute of Science and’Technology, 373-1, Kusong-dong, Yusong-
gu, Taejon, Korea.

IEEE Log Number 9210207.

z

INCIDENT WAVE I SCATTERED WAVE

-a
////////////// \\\\\\\\\\\\\\+ x

.,.
/ \
/ \
/ \
/ k(n): t PERFECT
/ ,. ...,.

\ CONDUCTOR
/
/

\
\

Fig. 1.

IL Scattered AND RECEIVED FIELDS DERIVATION

Fig. 1 shows a perfect-conducting, flanged, parallel-plate wave-

guide of width 2a. In Region I (z>O) an incident field E; (TE

mode: transverse-electric-to-propagation-direction) impinges on the

flanged parallel-plate waveguide. Region II (.z <O, –a<~<a)

denotes the waveguide interior. The wave numbers of Regions I and

II are ko(=27r/A) andk, respectively, andthetime factor e–3Wt is

suppressed.

In Region I the total electric field consists of the incident, reflected,

and scattered fields which are written as

Ej(z, z) = e~~”x-~k’:

where

kr = lso sin 9

k, = ko Cos $

Since HZ(Z, Z) = –1/(juIfl)8E&(z, z)/8z, the corresponding r

components of the incident, reflected, and scattered H fields may

be readily obtained.

In Region 11 the total transmitted field may be represented as

w

13j(.z, z) = ~ dm sin am(z + a)e–~cm”

?n=l

where

am= rn7r/(2(z)

(m = ~~.

(1)

To determine the unknown coefficients dm it is necessary to

enforce continuity in the tangential E and H fields. First, continuity

of the tangential E field along the z–axis yields

Ej(.z, O) = E~(z, O) 1x1< a

=0 Ixl>a.
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Taking the Fourier transform of both sides of the above equation,

we get

/
E;(() = m /

a
Ej(z, O)eJc”dx = ll~(z, O)e’C’ dx. (2)

—cc —a

Substituting (1) into (2) and performing the integration with respect

to x, we obtain

Second, continuity of the tangential H field along –a < x <

a, z = O, gives

H:(z> 0) + H:(.z, O) + H:(.z, O) = H;(z, O)
.

21cze3kx= –
J
m~-Ej(oe-’c” d< = ~ dm <m

-co 2“ ?n=l

sin am($ + a) .

Substituting (3) into (4), we obtain

(4)

?72=1

In order to determine the coefficient dm, we multiply the above

equation by sin an (z + a) and integrate both sides with respect to z

from –a to a. We then obtain

2k.an
a; _ k2 [

–(–l)ne’k”a + e–’k’”
z

]=*S

?n=l

. dmImn + dn&a (5)

where

I m. =
J“—cc

aman [(—l)~e~ca — e–~fa] [(—l)ne–~~a — e~ca]kl

(C2 -a~)(~’ -a~)
d[ .

Contour integral evaluation of l~n may be performed in the complex

< plane to give

I m. = 27raqmtimn – (Ilmn + IZmn) (6)

whereT7m = m and~mnis fioIRcker delta. The explicit
expressions for 11~ n and Ia~n are given in [5]. We find

J

m –4jQ~(–l)ne23~0 me–2k0”u ~ dv (~)
Ilmn =

o [(1 +.iv)2 - q [(1 +.iv)2 - 82]

where

Q= amlko, /3=an/ko.

Performing the integrations with respect to v [5], we obtain

I,mn = –
2a/3e2Jk0a(-l)n

(cl’ - /32)

. ~ S/[[A(t,) - A(t2)]/cI - [A(tt) - A(tzr)]/~]

(8)

where

S1= ()~:1 (o.5j)1-15

A(t) = (–l)i#O’5ep’er~c(@) + 2’-~fip0’5-Z

t–1

~~ (21 - 2?- -3)!! (-2pt)r

T=o

p = 21cOa

erfc(. ..) : complementary error function

tl= (a!- l)j, tz = (–a – l)j,

ts = (/?– l)j, t4=(–/?-l)j.

Note that 11~~ in (8) is expressed in terms of an asymptotic series

( )
of which the lth term is O 1 /(kOa)l–O”5 . This series expression

for llmn converges only for 12k0 a/(rnn) \ > 1;hence, it is cclm-

putationally more efficient to use the rapidly convergent integral (7)

than (8) for the evaluation of ll~n, When koa ~ cm the branch-cut

contribution becomes negligible and I~n - 2rrarl~ ti~~.

Substituting l~n of (6) into (5) and solving for d~, we obtain

D=(U– R)-’S=S+RS+R2S+.. (9)

where D is a column matrix with elements dm, U is the identity

matrix, R is a full matrix with elements T. ~ and S is a column

matrix with elements s~. The explicit expressions for rm m and s~

are as follows:

(I,mn + Izmn )

‘“m = 27r(& + %)C7

2k,a. [–(–l)ne~kza + e–Jk”a]
Sn =

(&+ q.)a(a% - k?) o

If k = kO, then

(Ilmn + 12m?2)
rnm =

47r&a

k:an [–(–l)ne~kza + e–~k”a]
Sn =

~.a(a~ – k:) “

AD examination of rn~ reveals that rn~ N 0[1/@] for

koa >1 and fn + ~n # O. For koa >>1 the branch-cut contribution

may be ignored (rn~ = O). Thus (9) reduces to the Kirchhoff

approximation

d ?n= sm. (lo)

The branch-cut contributions II~n and Iz~n in Imn account for

coupling between the continuous spectrum of E: (x, z) and the

discrete spectrum of13~ (x, z). When koa >>1, the magnetic current

at the aperture, E; (a, O), is approximately given as E; (z, 0) which

has a very narrow spectral width; hence, the branch-cut contributions

can be ignored.

Another special case of interest is low-frequency scattering

(koa < 1).When koa <1. the dominant element among r~~t is

rl I whose value is approximately given by 2/7r2. Hence, we have

dl = s,/(1 -ml). (11)

III. NUMERICAL COMPUTATIONS

The time-averaged power density P, which is received by the

flanged parallel-plate waveguide, is
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where the Et and Ht are the transmitted E and H field vectors, and TABLE I

the symbols Re(. . . ) and (. ..)* denote, respectively, the real part of

(.. .)” and the complex conjugate of (.. .).

The far-zone scattered field at a distance r from the origin can be

evaluated by utilizing the stationary phase approximation. We find

where $S = sin – 1 (x/r) and r = ~~.

We first evaluate the scattered field for low-frequency scattering

(kOu, < 1). Substituting (11) into (12), and taking the leading term

(m = 1), we obtain

z #kor-33r/4)

Ej(OS, d) x 0.5(kOa)
&

Cos 8 Cos .$s . (13)

Note that (13) agrees well with other low-frequency solution of

scattering from a narrow groove [6].

In Table I the transmission coefficients d~ are tabulated versus

2a/A for 0 = OO. Note that dz = d~ = = O because 0 = OO.

Amplitude of d~ Phase, degrees

2a/A dl d3 d5 dl ds d5

0.51
0.61
0.71
0.81
0.91
1.01
1.11
1.21
1.31
1.41
1.51
1.61

3.0714
2.0517
1.7721
1.6238
1.5304
1.4461
1.4194
1.3841
1.3565
1.3344
1.3262
1.3327

0.1710
0.1506
0.1771
0.2210
0.2833
0.3635
0.4684
0.6088
0.8061
1.1150
1.5705
1.0477

0.0738

0.0592

0.0644

0.0758

0.0910
0.1092
0.1299
0.1524
0.1754
0.1947
0.1600
0.1595

–19.61

–7,27
–3.26

–1.27
–0.20

0.36
0.61
0.65
0.53
0.22

–0.83
–0.55

–41.26

–63.11

–76.02

–83.70

–87.72

–89.03
–88.06

–84.83
–78.73

–67.75
–27.14
–12.05

–37.79

–55.66
–68.30

–76.61
–81.45

–83.66

–83.80

–82.08
–78.34

–71.60
–59.36

–75.68

In Fig. 2 Idm I are plotted versus .9 for kOa = 10 (k = kO). Both

(9) and (10) are used to obtain the exact and approximate solutions

respectively. Fig. 2 shows that the exact and approximate solutions

agree well for high-frequency scattering.

Fig. 3 show the backscattered a (0, = –8 ) versus 6’ for kOa =
[1]

10 where a = lim,-~ 2nrlEj(Os, 0)/Ej(0)12. The number of

coefficients d~ used in the computation are 10. Comparison of the

exact and approximate solutions for the cases k = kO and fiko [2]

shows that an increase in k results in a decrease in a. In Fig. 3

the exact solution is compared with the UTD solution which may [3]
be obtained by superimposing the singly-diffracted solutions [2].

This comparison between the UTD solution and ours indicates good

agreement (less than 2 dB error) when $ < 20°. [4]

[5]

IV. CONCLUDING REMARKS

Using the Fourier transform and mode-matching approach, we
[6]

obtain the series solution to scattering from the flanged waveguide.

Numerical computations are performed to illustrate the behaviors

of the fields scattered by and received by the flanged-parallel plate

waveguide. The series solution, which is based on (9), is exact and

numerically efficient.
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